Reproducibility of Soil Moisture Ensembles When Representing Soil Parameter Uncertainty Using a Latin Hypercube-Based Approach with Correlation Control
نویسندگان
چکیده
[1] Representation of model input uncertainty is critical in ensemble‐based data assimilation. Monte Carlo sampling of model inputs produces uncertainty in the hydrologic state through the model dynamics. Small Monte Carlo ensemble sizes are desirable because of model complexity and dimensionality but potentially lead to sampling errors and correspondingly poor representation of probabilistic structure of the hydrologic state. We compare two techniques to sample soil hydraulic and thermal properties (SHTPs): (1) Latin Hypercube (LH) based sampling with correlation control and (2) random sampling from SHTP marginal distributions. A hydrology model is used to project SHTP uncertainty onto the soil moisture state for given forcings. For statistical comparison, we generate 20 ensembles for 7 ensemble sizes. Variance in ensemble moment estimates decreases with increasing ensemble size. The LH‐based approach yields less variance in the estimate of ensemble moments at all ensemble sizes, an advantage greatest with small ensembles. Implications for hydrologic uncertainty assessment, data assimilation, and parameter estimation are discussed.
منابع مشابه
The impact of model and rainfall forcing errors on characterizing soil moisture uncertainty in land surface modeling
The contribution of rainfall forcing errors relative to model (structural and parameter) uncertainty in the prediction of soil moisture is investigated by integrating the NASA Catchment Land Surface Model (CLSM), forced with hydro-meteorological data, in the Oklahoma region. Rainfall-forcing uncertainty is introduced using a stochastic error model that generates ensemble rainfall fields from sa...
متن کاملRepresenting major soil variability at regional scale by constrained Latin Hypercube Sampling of remote sensing data
This paper presents a sparse, remote sensing-based sampling approach making use of conditioned Latin Hypercube Sampling (cLHS) to assess variability in soil properties at regional scale. The method optimizes the sampling scheme for a defined spatial population based on selected covariates, which are assumed to represent the variability of the target variables. The optimization also accounts for...
متن کاملCommodity price uncertainty propagation in open-pit mine production planning by Latin hypercube sampling method
Production planning of an open-pit mine is a procedure during which the rock blocks are assigned to different production periods in a way that leads to the highest net present value (NPV) subject to some operational and technical constraints. This process becomes much more complicated by incorporation of the uncertainty existing in the input parameters. The commodity price uncertainty is among ...
متن کاملAssimilating in situ soil moisture measurements into the DSSAT-CSM using a Kalman filter
With the ability to monitor soil moisture in time comes the opportunity to develop ways to incorporate these measurements into predictive models, without compromising or overriding the model physics. The importance of soil moisture to the growth of crops is well understood and because of this it is recognized as one of the more important parts of crop modeling programs. This research focused on...
متن کاملVolumetric soil moisture estimation using Sentinel 1 and 2 satellite images
Surface soil moisture is an important variable that plays a crucial role in the management of water and soil resources. Estimating this parameter is one of the important applications of remote sensing. One of the remote sensing techniques for precise estimation of this parameter is data-driven models. In this study, volumetric soil moisture content was estimated using data-driven models, suppor...
متن کامل